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We present a measurement of the top quark mass in pp̄ collisions at a center-of-mass energy
1.96 TeV at the Fermilab Tevatron Collider. The data are collected by the D0 experiment for
a total integrated luminosity of 9.7 fb−1. The matrix element technique is applied to tt̄ events
with two leptons (electrons or muons) and at least two jets. The calibration of the jet energy
scale determined in the lepton + jets final state is applied to jet energies. This correction allows
a significant reduction of the systematic uncertainty in the measurement. We obtain a top quark
mass of mt = 173.9 ± 1.8 GeV.

I. INTRODUCTION

The top quark is the heaviest elementary particle of the standard model (SM) [1–3]. It was discovered in 1995 by
the D0 and CDF experiments at the Tevatron pp̄ collider at Fermilab [4, 5] and has several unique features. The top
quark mass (mt) is a free parameter of the SM Lagrangian and can not be predicted from first principles. Despite
the fact that the top quark decays weakly, its large mass leads to a very short lifetime of ≈ 5 · 10−25 s [6–8]. It decays
to a W boson and a b quark before hadronizing, a process that has a characteristic time of 1/ΛQCD ≈ (200 MeV)−1

equivalent to τhad ≈ 3.3 · 10−24 s, where ΛQCD is the fundamental scale of quantum chromodynamics (QCD). This
provides a unique possibility to measure the mass of the top quark high precision.

At the Tevatron, top quarks are produced mainly as tt̄ pairs through the strong interaction. At leading order (LO)
in perturbative QCD, a pair of top quarks is produced via quark-antiquark (qq̄) annihilation with a probability of
about 85% [9, 10], or via gluon-gluon (gg) fusion (see Fig. 1).

Final states in tt̄ production are classified according to the decay of the two W bosons. In this measurement we
use events in the dilepton final state where both W bosons decay to leptons: tt̄ → W+b W−b̄ → ℓℓ′νℓνℓ′bb̄. More
specifically, we consider the three combinations of leptons, ee, eµ, and µµ, including also electrons and muons from
leptonic decays of τ leptons: W → τντ → ℓνℓντ .

We present an updated measurement of the top quark mass in the dilepton channel using the matrix element (ME)
approach. This measurement uses all data accumulated by the D0 experiment during the Run II data taking period
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FIG. 1: LO Feynman diagrams for the top quark production.

for an integrated luminosity of 9.7 fb−1. Similarly to the recent mass measurement in the dilepton final state using
the neutrino weighting technique [11], we correct jet energies by a factor obtained in the top quark mass measurement
in the lepton + jets (ℓ+jets) analysis [1, 2]. We also use the final D0 jet energy scale (JES) corrections [12] and the
refined corrections of the b-quark jet energy scale [12].

II. DETECTOR AND EVENT SAMPLES

A. Detector and object identification

The D0 detector is described in detail in Refs. [13–19]. It has a central tracking system consisting of a silicon
microstrip tracker and a central fiber tracker, both located within a 2 T superconducting solenoidal magnet. The
central tracking system is designed to optimize tracking and vertexing at detector pseudorapidities of |ηdet| < 2.5 1.
A liquid-argon sampling calorimeter has a central section covering pseudorapidities |ηdet| up to ≈ 1.1, and two end
calorimeters that extend coverage to |ηdet| ≈ 4.2, with all three housed in separate cryostats. An outer muon system,
with pseudorapidity coverage of |ηdet| < 2, consists of a layer of tracking detectors and scintillation trigger counters
in front of 1.8 T toroids, followed by two similar layers after the toroids.

Electrons are identified as energy clusters in the calorimeter within a cone of radius R =
√

(∆η)2 + (∆φ)2 = 0.2
(where φ is the azimuthal angle) that are consistent in their longitudinal and transverse profiles with expectations of
electromagnetic showers. More than 90% of the energy of an electron candidate must be deposited in the electromag-
netic part of the calorimeter. Electrons are required to be isolated by demanding that less than 20% of its energy is
deposited in an annulus of 0.2 < R < 0.4 around its direction. This cluster has to be matched to track reconstructed
in the central tracking system. We consider electrons in the CC with |ηdet| < 1.1 and in the EC with 1.5 < |ηdet| < 2.5.
The transverse momenta of electrons (pe

T ) must be greater than 15 GeV. In addition, we use an electron multivariate
discriminant based on tracking and calorimeter information to reject jets misidentified as electrons. It has between
75% and 80% efficiency to select electrons, and a rejection rate of ≈ 96% for jets.

Muons are identified [20] as segments in at least one layer of the muon system that are matched to a tracks
reconstructed in the central tracking system. Reconstructed muons must have pT > 15 GeV and satisfy two isolation
criteria. First, the transverse energy deposited in the calorimeter annulus around the muon 0.1 < R < 0.4 (Eµ,iso

T )
must be less than 15% of the transverse momentum of the muon (pµ

T ). Secondly, the sum of the transverse momenta

of the tracks in a cone of radius R = 0.5 around the muon track in the central tracking system pµ,iso
T ) must be less

than 15% of pµ
T .

Jets are identified as energy clusters in the electromagnetic and hadronic parts of the calorimeter reconstructed
using an iterative mid-point cone algorithm with radius R = 0.5 [21] and |ηdet| < 2.5. A jet energy scale (JES)
correction is determined by calibrating the energy deposited in the jet cone using transverse momentum balance in
photon+jet and dijet events [22].

Additionally, we correct the difference in the single-particle response between data and simulation yielding a parton-
flavor dependent JES correction [12]. This correction significantly reduces the bias in the energy and the total JES
uncertainty of the jets initiated by b-quarks. Jets in simulated events are corrected for residual differences in energy
resolution and energy scale between data and simulation. These correction factors are measured by comparing data

1 The pseudorapidity is defined as η = − ln[tan(θ/2)], where θ is the polar angle of a reconstructed particle originating from a primary
vertex with respect to the proton beam direction. The detector pseudorapidity ηdet is defined relative to a center of the detector instead
of the primary vertex.
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and simulation in Drell-Yan (Z/γ⋆ → ee) events with accompanying jets [12]. When a muon track overlaps with the
jet cone, the momentum of that muon is added to the jet pT, assuming that the muon originates from the semileptonic
decay of a hadron belonging to the jet.

The typical JES uncertainty is about 2%. We improve this uncertainty by calibrating the jet energy after event
selection with a scale factor kJES measured in the lepton+jets final state using jets associated with the W -boson
decay [1, 2]. The kJES correction factor is applied to the jet pT in data as pcorr

T = pT /kJES, independently for each
data taking period. We apply the corrections averaged over e+jet and µ+jet final states (reported in Table 1). The
uncertainties related to the determination and propagation of the kJES scale factor are accounted for as systematic
uncertainties.

Epoch kJES
Integrated
Luminosity

RunIIa 0.993 ± 0.016 1081 pb−1

RunIIb1 1.027 ± 0.013 1223 pb−1

RunIIb2 1.033 ± 0.008 3034 pb−1

RunIIb3 and RunIIb4 1.026 ± 0.006 4398 pb−1

TABLE 1: The JES correction factor kJES and its statistical uncertainty, averaged over e+jet and µ+jet final states, for different
data taking periods with their corresponding integrated luminosities.

We use a multivariate analysis (MVA) to identify jets originating from b quarks [23, 24]. The algorithm combines
the information from the impact parameters of tracks and from variables that characterize the properties of secondary
vertices within jets. Jet candidates for b tagging are required to have at least two tracks with pT > 0.5 GeV originating
from the vertex of the pp̄ interaction and, to be matched to a jet reconstructed from the tracks.

The missing transverse momentum (or missing transverse energy), /pT , is reconstructed from the energy deposited
in the calorimeter cells, and corrections to pT for leptons and jets are propagated into /pT . A significance in /pT , σ/pT

,
is defined for each event through a likelihood discriminant constructed from the ratio of /pT to its uncertainty.

B. Event selection

The dilepton final state contains two isolated charged leptons, two b-quark jets and a significant /pT due to escaping
neutrinos. We follow the approach developed in Ref. [25, 26] for the event selection, using the criteria listed below:

(i) For the ee and µµ channels, we select events that pass at least one single-lepton trigger, while for the eµ
channel, we consider events selected through a mixture of single and multilepton triggers and lepton+jet triggers.
Efficiencies for single electron and muon triggers are measured using Z/γ⋆ → ee or Z/γ⋆ → µµ data, and found
to be ≈ 99% and ≈ 80%, respectively, for dilepton signal events. For the eµ channel, the trigger efficiency is ≈
100%.

(ii) We require at least one pp̄ interaction vertex in the interaction region with |z| < 60 cm, where z is the coordinate
along the beam axis, and z = 0 is the center of the detector. At least three tracks with pT > 0.5 GeV must be
associated with this vertex.

(iii) We require at least two isolated leptons with pT > 15 GeV, both originating from the same interaction vertex. We
consider electrons and muons identified with the standard D0 identification criteria [20, 27] in the pseudorapidity
range of |ηdet| < 2.0 for muons and |ηdet| < 1.1 or 1.5 < |ηdet| < 2.5 for electrons. The two highest-pT leptons
must have opposite electric charges.

(iv) To reduce the background from bremsstrahlung in the eµ final state, we require the distance in (η, φ) space
between the electron and the muon trajectories to be R(e, µ) > 0.3.

(v) We require the presence of at least two jets with pT > 20 GeV and |ηdet| < 2.5.

(vi) The tt̄ final state contains two b-quark jets.

To improve the separation between signal and background, we apply a selection using the b-identification MVA
discriminant of the two jets of largest pT . We use different cutoffs of the MVA variable, corresponding to b-quark
jet identification efficiencies in tt̄ events of 84% in eµ, 80% in ee, 78% in µµ, with background misidentification
efficiencies, of 23%, 12%, 7% respectively. These correspond to the following requirements on MVA discriminant:
maxMV A > 0.025 for ee, maxMV A > 0.02 for eµ and maxMV A > 0.075 for µµ channel.



4

(vii) Additional selection criteria based on global event properties further improve the signal purity. In the eµ events,
we require HT > 110 GeV, where HT is the scalar sum of the transverse momenta of the leading lepton and the
two leading jets. In the ee final state, we require σ/pT

> 5, while in the µµ channel, we require /pT > 40 GeV and
σ/pT

> 2.5.

(viii) Rarely, the numerical integration of the matrix elements, described in section IV, may yield extremely small
probabilities which does not numerically allow any proper use of the event. We reject such events using a
selection which has an efficiency of 99.97% for simulated tt̄ signal samples. For background MC events, the
efficiency is 99.3%. No event is removed from the final data sample by this requirement.

C. Simulation of the signal and background events

The main sources of background in the ℓℓ (ee, eµ, µµ) channel are the Drell-Yan production qq̄ → Z/γ⋆ → ℓℓ,
diboson production (WW, WZ, ZZ), and instrumental background. The instrumental background arises mainly
from (W → ℓν)+jets and multijet events in which one or two jets are misidentified as electrons or where muons or
electrons originating from semileptonic decays of a heavy-flavor hadron appear as isolated. To estimate the tt̄ signal
efficiency and the background contamination, we use Monte Carlo (MC) simulation for all contributions except for
the instrumental background, which is estimated from data.

The number of the expected tt̄ signal events is estimated using the tree-level LO matrix element generator Alpgen

(version v2.11) [28] for the hard-scattering process with up to two additional partons, interfaced with the Pythia

generator [29] (version 6.409, D0 modified tune A [30]) for parton showering and hadronization. The CTEQ6M parton
distribution functions [31, 32] are used for the generation, and the top quark mass value is set to 172.5 GeV. The
NNLO theoretical cross section of 7.23 pb [33] is used for the normalization. Generated MC events are processed using
a geant-based [34] simulation of the D0 detector. To simulate effects from additional overlapping pp̄ interactions,
“zero bias” events are selected randomly in collider data and overlaid on the simulated events. For the ME method
calibration, we use samples with the top quark mass of 165 GeV, 170 GeV, 175 GeV, 180 GeV. Those samples are
generated with the same settings as the sample with the mass 172.5 GeV. Drell-Yan samples are simulated using the
Alpgen generator for the hard-scattering process with up to three additional partons, and the Pythia generator for
parton showering and hadronization. We generated separately events Z + heavy flavors partons, Z → bb̄ and Z → cc̄,
and Z + light flavor partons. The MC cross sections for the heavy flavor samples are scaled-up with the K-factors of
1.52 for Z → bb̄ and 1.67 for Z → cc̄. In the diboson events simulation, the Pythia generator is used for both the
hard-scattering and parton showering parts.

D. Estimation of the instrumental background contributions

In the ee and eµ channels, we determine the contributions from events with jets misidentified as electrons using
the “matrix method” [35]. A loose sample of events (nloose) is defined following the same selection as used for the tt̄
candidate sample in items (i) – (viii) above, but ignoring the requirement on the electron MVA discriminant. For the
dielectron channel, we drop the MVA requirement on one of the electrons chosen randomly.

We measure the efficiency εe that events with a true electron pass the requirement on the electron MVA discriminant
using Z/γ⋆ → ee data. We also measure the efficiency fe that events with a misidentified jet pass the electron MVA
requirement using eµ events chosen with selection criteria items (i) – (v), but requiring leptons of the same electric

charge. For muons, we also apply a reversed isolation requirement: Eµ,iso
T /pµ

T > 0.2, pµ,iso
T /pµ

T > 0.2, and /pT < 15 GeV,
to minimize the contribution from W → eν+jets events.

We extract the number of events with jets misidentified as electrons (nf ), and the number of events with true
electrons (ne), by solving the equations:

nloose = ne/εe + nf/fe, (1)

ntight = ne + nf , (2)

where ntight is the number of events remaining after implementing the selections (i) – (vii). The factors fe and εe are
measured separately for each jet multiplicity (0, 1, and 2 jets), and separately for electron candidates in the central
and end parts of the calorimeter. Typical values of εe are 0.7 – 0.8 in the CC and 0.65 – 0.75 in the EC. Values of fe

are 0.005 – 0.010 in the CC, and 0.005 – 0.020 in the EC.
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Channel Z/γ⋆ Diboson Instrumental tt̄ Total Selected
eµ 13.0+1.7

−1.6 3.7+0.8
−0.8 16.4+4.0

−4.0 260.6+22.5
−16.3 293.8+23.5

−17.7 346
ee 13.8+2.1

−1.9 1.9+0.4
−0.4 1.8+0.2

−0.2 88.0+9.1
−8.2 105.5+10.3

−9.5 104
µµ 10.6+1.3

−1.4 1.7+0.4
−0.4 0 76.0+6.2

−4.1 88.3+6.7
−4.7 92

ℓℓ 37.4+5.1
−4.9 7.3+1.6

−1.6 18.2+4.0
−4.0 424.6+37.8

−28.6 487.6+40.5
−31.9 545

TABLE 2: Numbers of expected and selected events in data. Systematic uncertainties are shown for expected number of events.

In the eµ and µµ channels, we determine the number of events with an isolated muon arising from decays of hadrons
in jets relying on the same selection as for the eµ or µµ channels, but requiring that both leptons have the same
charge. In the µµ channel, the number of events is taken to be the number of same-sign events. In the eµ channel, it
is the number of events in the same-sign sample after subtracting the contribution from events with jets misidentified
as electrons.

To use the ME technique, we additionally need a pool of events from which to calculate probabilities corresponding
to the instrumental background. To select these events in the eµ channel we use exactly the same selection as for the
analysis except for the lepton identification. We require events to satisfy criteria (i)–(vii), but ignoring the requirement
on the electron MVA discriminant. Using this selection we obtain a background sample of 2901 events. In the µµ
channel the number of the multijet and W+jets background events is zero (Table 2). In the ee channel, the number
of such events is non-zero, but small. We do not select any template events for them, but instead increase the number
of background events due to Z-boson production by the corresponding amount in the calibration procedure.

III. EVENT YIELD AND CONTROL PLOTS

The numbers of predicted background events, as well as the expected numbers of signal events for the final selection
in eµ, µµ and ee channels are given in Table 2 and show the high signal purity of the selected sample. Comparisons
between distributions measured in the data and expectations from simulated samples after the final selection are
shown in Figures 2-5 for the combined ee, eµ and µµ channels. The jet pT and HT distributions in Figures 4 and 5
are shown after applying the kJES correction from the ℓ+jets analysis [1, 2].

IV. MATRIX ELEMENT TECHNIQUE

In this measurement we use a matrix element (ME) approach [36]. This approach allowed the most precise top
quark mass measurement at the Tevatron in the ℓ+jets final state [1, 2] and was used in the previous measurement
of mt in the ℓℓ final state using 5.3 fb−1 [37]. The matrix element method for this analysis is described below.

A. Event probability calculation

The ME technique associates to each event a probability calculated as:

P (x, ftt̄,mt) = ftt̄ · Ptt̄(x,mt) + (1 − ftt̄) · Pbkg(x), (3)

where ftt̄ is the fraction of the tt̄ events in the data set, Ptt̄(mt) and Pbkg are the respective per-event probabilities
calculated under the hypothesis that the selected event is either a tt̄ event characterized by a top quark mass mt,
or that is a background event. Here x represents the set of the measured parameters, i.e., pT , η, and φ for jets and
leptons. In this measurement, we assume that the masses of top quark and anti-top quark are the same [38–41]. The
probability Ptt̄(x,mt) is calculated as

Ptt̄(x,mt) =
1

σobs(mt)

∫

fPDF(q1)fPDF(q2)
(2π)4|M (y,mt)|2

q1q2s
W (x, y)dΦ6dq1dq2 . (4)

Here, q1 and q2 represent the respective fractions of proton and antiproton momenta carried by the initial state
partons, fPDF represents the parton distribution functions, s is the square of the pp̄ center-of-mass energy, and y
refers to partonic final state four-momenta of the particles. The detector transfer functions W (x, y) correspond to the
probability for reconstructing true four-momenta y as x. For the ME calculation, the LO matrix element M (y,mt) of
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FIG. 2: Distributions in lepton pT and data/prediction ratio
for combined ee, eµ and µµ channels, requiring at least two
jets.
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FIG. 3: Distribution in the number of jets and data/prediction
ratio for combined ee, eµ and µµ channels.
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FIG. 4: Distributions in jet pT after kJES correction and
data/prediction ratio for combined ee, eµ and µµ channels,
requiring at least two jets.
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FIG. 5: Distributions in HT after kJES correction and
data/prediction ratio for combined ee, eµ and µµ channels
requiring at least two jets.

the processes qq̄ → tt̄ → W+W−bb̄ → ℓ+ℓ−νℓν̄ℓbb̄ is used [42]. The matrix element M is averaged over the colors and
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spins of the initial state partons, and summed over the colors and spins of final state partons. The gg matrix element
is ignored as it comprises only 15% of the total tt̄ production cross-section at the Tevatron, including it does not
significantly improve the precision of the method. The term dΦ6 represents the six-body phase space, and σobs(mt) is
the tt̄ cross section observed at the reconstruction level, calculated with the matrix element M (y,mt) and corrected
for the selection efficiency.

The transfer functions W (x, y) describe the detector response to the reconstructed leptons and jets.
For this measurement, electron momenta and the directions of all reconstructed objects are assumed to be perfectly

measured and are thus modelled with delta functions δ(x − y), reducing the dimensionality of the integration. This
leaves the jet and muon momenta to be modelled.

Following the same approach as in the previous measurement [37], we parametrize the jet energy resolution as
the sum of two Gaussian functions, with parameters depending linearly on parton energies, while the resolution
in muon 1/pT is described by a single Gaussian function. All transfer function parameters are determined from
simulated tt̄ events and updated for the final D0 object identifications [20, 24, 27] and final JES [12]. We use the
same parametrizations for the transfer functions as in the ℓ+jets top quark mass measurement, and their detailed
description is given in Ref. [2].

The masses of the six final state particle are known, so we integrate over 8 dimensions in the ee channel, 9 dimensions
in the eµ channel and 10 in the µµ channel. As integration variables we use the top and antitop quark masses, the
W+ and W− boson masses, the transverse momenta of the two jets, 1/pT for any muons and the pT and φ of the
tt̄ system. This choice of variables is different from the previous measurement [37] and allows the reduction of the
integration time by a factor of ∼ 100.

To reconstruct the masses of the top quarks and W bosons, we solve the kinematic equations numerically and sum
over the two possible jet-parton assignments and over all real solutions for each neutrino momentum [43]. If more than
two jets exist in the event we use only the first two with highest transverse momenta. The integration is performed
with the Monte Carlo based numerical integration algorithm VEGAS [44, 45], as implemented in the GNU Scientific
Library (GSL) [46].

Z/γ⋆ + jets events are the dominant source of background in the dilepton final state, (see Table 2), therefore we
consider only the Z/γ⋆ + jets matrix element for the background probability calculation, Pbkg(x). We use the LO
Z/γ⋆ → ℓℓ+2 jets ME from the Vecbos generator [47]. In the eµ channel, the background events are produced by
Z/γ⋆ → ττ → ℓℓ+2 jets process. Since Z/γ⋆ → ττ decays are not implemented in Vecbos, we use an additional
transfer function to describe the energy of the final state lepton relative to the initial τ lepton, derived from parton-
level information [43]. As for the case of the tt̄ probability, the jet and charged-lepton directions are assumed to be
well-measured, and each kinematic solution is weighted according to the pT of the Z/γ⋆ +jets system. The integration
of Pbkg(x) is performed over the energies of the two jet partons and both possible assignments of jets to quarks.

The normalization of the background probabilities could be done in the same way as for the signal probabilities.
However, the computation of the integral given by Eq. (4) requires significant computational resources, so a different
approach is chosen. In this approach we minimize the difference between the fitted signal fraction and expected true
fraction by adjusting the background normalization; see Ref. [48] for more details.

B. Likelihood evaluation and mt extraction

In order to extract the top quark mass from a set of n events with measured four-momenta x1, .., xn, a log-likelihood
function is built from the event probabilities

− ln L(x1, .., xn; ftt̄,mt) = −
n

∑

i=1

ln(Pevt(xi; ftt̄,mt)). (5)

This function is minimized by adjusting two free parameters: the signal fraction, ftt̄, and the top quark mass, mt.
To calculate the signal probabilities, we use step sizes of 2.5 GeV for mt and 0.004 for ftt̄. To fit the minimum value
of the log-likelihood function, mlhood, we use a second degree polynomial function in the range of [-5 GeV, +5 GeV]
around the minimum. The statistical uncertainty on the top quark mass, σlhood, is given by the difference of the mass
at − lnLmin and − ln Lmin + 0.5.

C. Method calibration

We calibrate the method, that is, correct for biases in the measured mass and statistical uncertainty, using an
ensemble testing technique. We generate data-like ensembles with simulated signal and background events, measure
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the top quark mass mi
lhood and uncertainty σi

lhood in each ensemble i by the minimization of the log-likelihood function,
and calculate the following quantities:

1. The mean value mmean of the mi
lhood distribution. Comparison of the mmean with the input to the simulation

determines the mass bias.

2. The mean value ∆mt of the uncertainty distribution in σi
lhood. This quantity characterizes the estimated

uncertainty on the measured top quark mass from the log-likelihood fit.

3. The standard deviation of the pull variable distribution, wpull, or pull width, where pull variable is defined as
(mi

lhood − mmean)/σi
lhood. The pull width provides a correction to the statistical uncertainty σlhood.

We use a resampling procedure while generating the ensembles and apply a correction to account for it.
We use 500 ensembles per calibration point, with the number of events per ensemble equal to the number of

events selected in data. In each ensemble the number of events from each background source is generated following
a multinomial statistics, using the expected number of background events from Table 2. The number of tt̄ events
is calculated as the difference between the total number of events in the ensemble and the generated number of
background events. Using MC samples generated at five different top masses (mMC), we determine a linear calibration
relation between the measured and generated masses: mmean = p0 + p1(mMC − 172.5). The obtained curves for the
combination of the three final states eµ, ee and µµ are shown in Fig. 6.
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The expected statistical uncertainty for the generated top quark mass 172.5 GeV is calculated as σexp(mt) =
∆mt(172.5 GeV) · wpull/p1, and obtained values are presented in Table 3.

Final state ee eµ µµ ℓℓ
Uncertainty (GeV) 3.7 1.7 3.5 1.4

TABLE 3: The expected uncertainties in mass for the ee, eµ, and µµ channels and combination.

V. RESULT ON DATA

The fit to the data was performed using an unknown offset in the measured mass using the following steps. Only
after the final approval of the methodology this offset was removed. Before performing the fit the kJES JES correction
factor from the lepton+jet mass analysis [1, 2] is applied to the jet pT in data as pcorr

T = pT /kJES, independently
for each data taking period. The correction procedure is explained in Section II. The uncertainties related to the
propagation of this correction from ℓ+jets to the dilepton final state are included in the systematic uncertainties
budget as “residual JES uncertainty” and “statistical uncertainty on kJES scale factor” in Section VI B 1. We apply
the ME technique to data events as follows:
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1. The log-likelihood function in data is shown in Figure 7.

2. The calibration correction from Fig. 6 is applied to mlhood and σlhood to obtain the corrected measured values:

mmeas = (mlhood − p0 − 172.5 (GeV))/p1 + 172.5 (GeV),

σmeas = σlhood · wpull/p1.

Table 4 shows the results for each channel separately and for the combination of the three channels. The distribution
of the expected statistical uncertainty for the MC top quark mass 172.5 GeV and for the combination of the three
channels ee, eµ and µµ is shown in Figure 8.

Final state ee eµ µµ ℓℓ
mt (GeV) 176.9 ± 4.6 172.2 ± 2.0 176.0 ± 4.8 173.9 ± 1.5

TABLE 4: The measured top quark mass corrected for the calibration for ee, eµ, µµ channels, and for the combination of the
three channels.

 before calibration (GeV)
t

m

160 165 170 175 180

l
n

 L

0

2

4

6

8

10

DØ preliminary

1 9.7 fb

FIG. 7: The negative log-likelihood values for the observed
data in dilepton channel as a function of generated top quark
mass are fit to a quadratic in order to extract the (uncali-
brated) measured mass. The range of the fit is ±5 GeV around
the minimum.

hmterr
Entries  500

Mean    1.032

RMS    0.0432

 before calibration (GeV)
top

m∆

0.9 0.95 1 1.05 1.1 1.15 1.2

N
u

m
b

e
r 

o
f 

E
n

s
e

m
b

le
s

0

10

20

30

40

50

60

70

80 hmterr
Entries  500

Mean    1.032

RMS    0.0432

DØ preliminary

1 9.7 fb
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VI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties affect the measured mt in two ways. First, the shape of the signal and background
log-likelihood functions could be affected directly leading to the bias in the calibration curve. Secondly, the signal-
to-background ratio in the selected data sample could be affected, leading to a different shape of the combined signal
plus background log-likelihood function and to bias in the calibration curve. Ideally these two contributions would
be treated coherently for each source of systematic uncertainty, but in practice the second effect is much smaller than
the first for the most important systematic uncertainties. Therefore we keep the same signal-to-background ratio in
pseudo-experiments except for the “signal fraction” systematic uncertainty. Background events are included in the
evaluation of all sources of the systematic uncertainty. To derive all systematic uncertainties we use the simulated
sample with mt =172.5 GeV.



10

A. Signal and background modeling systematic uncertainties

We determine uncertainties related to signal modeling by comparing simulations with different generators and pa-
rameters as described below. The evaluation of systematic uncertainties due to signal modeling follows the prescription
used in ℓ+jets ME analysis [2].

Higher order corrections. By default, we use Alpgen to model our signal events, which is a LO generator. To
evaluate the effect of higher order corrections on the top quark mass, we use signal events generated with mc@nlo.
Because mc@nlo is interfaced to Herwig for simulating the partom shower and hadronization, we use Alpgen

+Herwig events for this comparison.
Initial state radiation (ISR) and final state Radiation (FSR). This systematic uncertainty is evaluated

comparing the result using Pythia with the factorization and hadronization scale parameter varied by a factor ±50%
as done in Ref. [2].

Hadronization and underlying event. The systematic uncertainty due to the hadronization and underlying
event models is estimated as the difference between the top quark mass measured using default Alpgen +Pythia

sample and samples with different hadronization models. We considered three alternative samples Alpgen +Herwig,
Alpgen +Pythia Perugia tune 2011C (with color reconnection), Perugia tune 2011NOCR (without color reconnec-
tion) [49]. We take the largest of these differences as an estimation of the systematic uncertainty on the hadronization
and underlying event effects.

Color reconnection. We estimate the effect of the color reconnection model by comparing the top quark mass
measured with Alpgen +Pythia Perugia tune 2011C (with color reconnection) and Perugia tune 2011NOCR (with-
out color reconnection) [49].

b quark fragmentation uncertainty (b-jet modeling). Uncertainties in simulation of b-quark fragmentation
can affect the mt measurement through b-jet identification or transfer functions. This is studied using the procedure
described in Ref. [50] by reweighting b-quark fragmentation to match a Bowler scheme tuned to either LEP or SLD
data.

PDF uncertainties. The systematic uncertainty due to the choice of PDF is estimated by varying the 20 eigen-
values of the CTEQ6.1M PDF within their errors in the tt̄ MC. Ensemble tests are repeated for each of these changes
and the total uncertainty is evaluated as in Ref. [2].

Heavy-flavor scale factor. In the Alpgen Z → ℓℓ+jets background samples, the fraction of heavy-flavor events
is not well modelled. Therefore, a heavy-flavor scale factor is applied to the Z + bb and Z + cc cross sections to
reproduce data. This scale factor has an uncertainty of ±20%. We estimate its systematic effect by changing the
scale factor up and down within this uncertainty.

Transverse momentum of the tt̄ system. The distribution of transverse momentum of tt̄ system was found not
well modelled in ℓ+jets. To evaluate this systematic uncertainty, we reconstruct the tt̄ pT from the two leading jets,
two leading leptons, and E/T. The distribution in MC is reweighted to match that in data using a linear fit of tt̄ pT .

Luminosity reweighting or multiple pp̄ interactions. Multiple pp̄ interactions can potentially influence the
measurement of mt. By default, we reweight the luminosity profiles of our simulated MC samples to the luminosity
profile found in data individually for each data taking epoch, before any selection requirements are applied. To
estimate the possible mismatch in the luminosity profiles, we reweight the instantaneous luminosity profile in our MC
to correspond to it in data after selection.

B. Detector modeling uncertainties

1. JES systematic uncertainties

The relative difference between the JES in data and MC simulations is described by the global JES scale factor,
kJES, extracted from the ℓ+jets mass measurement [1, 2]. As mentioned above, we apply this correction factor to jets
pT in data. In the previous 5.4 fb−1 dilepton analysis, the JES and b/light jet response were the dominant systematic
uncertainties. The improvements made in the jet calibration [12] and the use of the kJES factor in the dilepton channel
reduce the uncertainty related to the JES from 1.5 GeV to 0.5 GeV.

Residual jet energy scale uncertainty. This uncertainty arises from the fact that the JES is jet pT and η
dependent. The determination of the JES correction in the ℓ+jets measurement assumes a constant scale factor,
i.e. we correct the average JES, but not the JES shape. Additionally, the kJES correction could be affected by the
different jet pT requirements on jets in the ℓ+jets and dilepton final states. There may also be a different JES offset
correction due to the different jet multiplicities. We estimate these uncertainties as follows: we use MC samples in
which the jet energies are shifted upward by one standard deviation of the γ+jet JES uncertainty. We correct jet pT

in these samples as pcorrMC
T = pMC

T · kUP
JES/kJES, where kUP

JES is the JES correction measured in the ℓ+jets analysis for
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the MC samples shifted up by one standard deviation. This correction is applied separately for the each data taking
period. The 1/kJES factor appears due the fact that kJES is applied to the data samples and not to MC samples. The
kDOWN
JES is not measured in the ℓ+jets final state, but assumed to have the same magnitude as the “UP variation.
Uncertainty on kJES factor. The statistical uncertainty on the kJES scale factor is 0.5% – 1.5% depending on

the data taking epoch (Table 1). We recalculate the mass measured in MC for the kJES correction shifted by one
standard deviation. This procedure is applied individually for each data taking period, and the obtained uncertainties
are summed up in quadrature.

b/light jet response or flavor dependent uncertainty. We apply this correction in our analysis and determine
their uncertainty, to be about 0.5%. We shift the correction by the corresponding uncertainty up and down to
determine the uncertainty in mt.

2. Object reconstruction and identification

Jet resolution systematic uncertainty. The jet smearing, shifting, removing procedure [12] applies additional
smearing to the MC jets, in order to account for the different jet pT resolution in data and MC. To compute the
systematic uncertainty on the jet resolution, the parameters of the jet energy smearing are varied by the size of the
uncertainty.

Electron momentum scale and resolution in energy. This uncertainty reflects the difference in the absolute
lepton momentum measurement and the simulated energy resolution [27] between data and MC. We vary the corre-
sponding parameters by plus or minus one standard deviation for the simulated samples and assign the difference in
the measured mass as a systematic uncertainty.

Muon pT resolution systematic uncertainty. We vary the muon pT resolution parameter [20] by ±1σ for the
simulated samples and assign the difference in the measured mass as a systematic uncertainty.

b-tagging efficiency. Difference in b-tagging modeling between data and simulation may cause systematic effects
on mt. To estimate this uncertainty, we vary the b-tagging corrections up and down within their uncertainties through
reweighting.

Trigger. To evaluate the impact of trigger on our analysis we scale the number of background events according to
the uncertainty on the trigger for different sub-channels. We rebuild ensembles according to the varied event fractions
and rederive the mass. The number of signal tt̄ events is changed accordingly as the number of events in data minus
the expected number of the background events.

Jet identification. Scale factors are used to correct the jet identification efficiency in MC. We estimate the
systematic uncertainty by varying these scale factors by ±1σ.

C. Method

MC calibration. The estimation of the statistical uncertainties due to the limited size of MC samples associated
with the calibration procedure is obtained through the statistical uncertainty of the calibration curve parameters. To
determine this contribution, we propagate the uncertainties on the calibration parameters p0 and p1 (Fig. 6) to mt.

Instrumental background. To evaluate systematic uncertainty on instrumental background we vary its contri-
bution up and down by 25%. The number of signal tt̄ events is changed accordingly as number of events in data
minus number of the instrumental events and the ensembles tests are repeated with this configuration to extract mt.

Background contribution (or signal fraction). To propagate the uncertainty associated to the background
level, we vary the number of background events according to its uncertainty (see Table 2), rebuild ensembles, and
rederive the mass. In the ensembles, the number of tt̄ events is defined as the observed number of events in data
minus the expected number of background events.

MC statistical uncertainty estimation. To derive the MC statistical uncertainty in the tt̄ samples, we divide
each sample into four independent subsets. The dispersion of masses from these subsets is used to estimate the
uncertainty.

D. Summary of systematic uncertainties

Table 5 summarizes all contributions to the uncertainty on the top mass measurement with the matrix element
method. Each systematic source is scaled by 1/p1 of mt calibration curve from Fig. 6. The errors are symmetrized in
the same way as in the ℓ+jets measurement [1, 2]. We use sign ± if the positive variation of the source of uncertainty
corresponds to a positive variation of the measured mass, and ∓ if it corresponds to a negative variation. As all
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Source Uncert. (GeV)

Signal and background modeling:

Higher order corrections +0.14
ISR/FSR ±0.16
Hadronization & UE +0.31
Color Reconnection +0.13
b-jet modelling +0.21
PDF uncertainty ±0.20
Heavy flavor ∓0.06
pT (tt̄) +0.03
Multiple pp̄ interactions −0.10
Detector modeling:

Residual jet energy scale −0.20
Uncertainty on kJES factor ∓0.46
Flavor dependent jet response ∓0.30
Jet energy resolution ∓0.15
Electron momentum scale ∓0.10
Electron resolution ∓0.16
Muon resolution ∓0.10
b-tagging efficiency ∓0.28
Trigger ±0.06
Jet ID +0.04
Method:

MC calibration ±0.03
Instrumental background ±0.07
MC background ±0.06

Total systematic uncertainty 0.88
Total statistical uncertainty 1.51
Total uncertainty 1.75

TABLE 5: Summary of systematic and statistical uncertainties for the measurement of mt in dilepton final states. The values
are for the combination of ee, eµ, and µµ channels.

the entries in the total systematic uncertainty are independent, the total systematic uncertainty on the top mass
measurement is obtained by adding all the contributions in quadrature.

VII. CONCLUSION

This note presents the D0 measurement of the top quark mass in dilepton final states, based on the matrix element
technique for all Run II data corresponding to the integrated luminosity of 9.7 fb−1. We measure the top quark mass

mt = 173.9 ± 1.5 (stat) ± 0.9 (syst) GeV

in agreement with the Tevatron and world average [3, 51]. This measurement significantly improves both statistical
and systematic uncertainties of the previous dilepton matrix element measurement [37].

[1] V. M. Abazov et al. (D0 Collaboration), Precision measurement of the top-quark mass in lepton+jets final states, Phys.
Rev. Lett. 113, 032002 (2014).

[2] V. M. Abazov et al. (D0 Collaboration), Precision measurement of the top-quark mass in lepton+jets final states, Phys.
Rev. D 91, 112003 (2015).

[3] ATLAS Collaboration, CDF Collaboration, CMS Collaboration, and D0 Collaboration, First combination of Tevatron and
LHC measurements of the top-quark mass (2014), arXiv:1403.4427.

[4] S. Abachi et al. (D0 Collaboration), Observation of the top quark, Phys. Rev. Lett. 74, 2632 (1995).
[5] F. Abe et al. (CDF Collaboration), Observation of top quark production in p̄p collisions, Phys. Rev. Lett. 74, 2626 (1995).
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